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Abstract

Background. A significant gap exists in the United States between ambitious 
regulatory goals requiring firms to introduce hybrid and electric vehicles, and 
consumer adoption of these technologies to date. However, the interventions 
required to close this gap are not obvious due to the complex feedbacks and 
time delays that govern alternative fuel vehicle (AFV) diffusion.

Purpose. The purpose of this article is to introduce Driving the Future (DtF), a 
free, web-based management flight simulator to explore the effects of 
automaker strategies and public policies on the US automotive market.

Method. We develop a behavioral, dynamic model portraying multiple automobile 
and fuel types, fueling infrastructure, and consumer choices, enabling users to 
rapidly experiment with how a wide array of decisions and assumptions shape 
the dynamics of AFV diffusion out to 2050.

Results. We describe how the simulator can be used to explore various scenarios 
for AFV adoption, and discuss how the simulator can help improve mental 
models and decision-making. We present evidence from classroom and online 
experiments, demonstrating that the simulation is both effective in developing 
users’ understanding of AFV diffusion dynamics, and enjoyable to use.
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Introduction

Reducing the environmental impacts of automotive transportation is an urgent public 
health imperative. In the United States, the transportation sector now produces more 
greenhouse gas (GHG) emissions that any other sector of the economy, including elec-
tricity generation and the residential, commercial, and industrial sectors (EIA, 2016a). 
Light duty vehicles, comprising passenger cars and light trucks, are responsible for 
61% of total transportation sector emissions (EPA, 2016). The combustion of oil-based 
fuels in road transportation is also the leading source of urban air pollution in the 
United States, responsible for an estimated 53,000 deaths per year (Caiazzo, Ashok, 
Waitz, Yim, & Barrett, 2013). Automobile demand is growing rapidly in emerging 
economies including China and India, with the global fleet expected to grow from 1.25 
billion vehicles today (Wards Auto 2016) to 2 billion vehicles by 2035 (Navigant, 
2014; Sperling & Gordon, 2009). Meeting global sustainability goals, including limit-
ing the worst effects of climate change, will not be possible without a rapid transition 
to zero-carbon automotive fuels over the coming decades.

A range of technologies have the potential to improve the efficiency of fuel use, 
such as light-weighting, and to reduce the carbon intensity of automotive fuels, such 
as electric vehicles and hydrogen fuel cell vehicles—if the electricity or hydrogen can 
be produced by low-carbon renewables such as wind and solar. Other emerging tech-
nologies promise greater transportation sustainability by changing how consumers 
own and operate automobiles. For example, car-sharing schemes such as Zipcar, and 
ride-hailing services such as Uber and Lyft, provide the use of automobiles on-demand 
without the need for personal vehicle ownership. And at the city level, transit-oriented 
development and multi-model transportation planning seek to reduce automobile 
dependence.

In the United States, the primary focus of regulators has been on improving the 
vehicle powertrain, driven by aggressive policies requiring the deployment of these 
efficient and alternative-fuel vehicles (AFVs). At the federal level, the Corporate 
Average Fuel Economy (CAFE) mandate requires automakers to improve the average 
fuel economy of their new vehicle sales to 54.5 miles per gallon (mpg) (4.3 L/100 
km)1 in ‘unadjusted’ mpg by 2025, equivalent to approximately 41 miles per gallon 
(5.7 L/100 km) in adjusted or real world terms2 (NHTSA, 2012). Multiplier credits are 
provided to firms that sell plug-in hybrid vehicles (PHEVs), battery-electric vehicles 
(BEVs) and hydrogen fuel cell vehicles (HFCVs). In addition, the Zero Emissions 
Vehicle (ZEV) mandate adopted by California and several other states supersedes 
CAFE, requiring automakers to sell an increasing number of zero-emissions electric 
and hydrogen vehicles, rising to approximately 15% of new vehicle sales by 2025 
(CARB, 2016). These high-level policies are supported by technology-specific incen-
tives in numerous government jurisdictions, including income tax credits, sales tax 
exemptions, and permission to drive single occupant AFVs in high-occupancy vehicle 
(HOV) lanes, which have had mixed success in accelerating AFV adoption (Diamond, 
2009; Gallagher & Muehlegger, 2011).
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However, a substantial gap exists between the ambitious goals of regulators and the 
current trajectory of the US automotive market. Sales of electric-drive vehicles have 
failed to take off despite considerable policy support, with PHEVs, BEVs, and HFCVs 
(see Table 1 for description of acronyms) accounting for little more than 1% of new 
vehicle sales (Figure 1). Sales of HEVs, including the iconic Toyota Prius, have fared 
little better: after strong initial growth, sales slowed around 2010, and fell noticeably 
in the last two years with the pronounced drop in the price of gasoline (Figure 1). 
Cheap gas has also stalled improvement in the fleet-average fuel economy of US new 
vehicle sales, with fuel economy plateauing since 2014 as buyers shifted to larger, less 
fuel-efficient vehicles (Figure 2).

To develop effective policy and strategy measures that close the fleet performance 
gap, decision-makers must understand the feedbacks that govern the diffusion of 
emerging AFV technologies. Multiple feedbacks, time delays, and nonlinearities make 
this task challenging, including: (i) slow turnover of the vehicle fleet; (ii) consumer 
learning and acceptance of AFVs resulting from marketing and social exposure; (iii) 
the co-evolution of compatible refueling infrastructure with AFV adoption; and (iv) 
improvements in key technologies resulting from R&D, learning-by-doing, and econ-
omies of scale and scope. These feedbacks create so-called “chicken and egg” dynam-
ics: consumers avoid alternative fuel vehicles unless they are affordable, capable, and 
offer ubiquitous fuel/charging points, but energy suppliers are reluctant to invest in 
fueling/charging infrastructure until they are sure there will be a viable market, and the 
costs and capabilities of the vehicles improve slowly because low AFV sales limit the 

Table 1.  Description of Vehicle Platform Acronyms.

Acronym Description

BEV An electric drive vehicle that is propelled by an electric motor, with a large 
battery to store electricity that can only be recharged by plugging the vehicle in.

BIO An internal combustion engine vehicle, similar to a conventional gasoline 
vehicle, that has been modified to run on ethanol biofuel.

DIESEL An internal combustion engine vehicle, similar to a conventional gasoline 
vehicle, that has been modified to run on diesel.

GAS A conventional internal combustion engine vehicle that runs on gasoline.
HEV A hybrid electric vehicle that combines a conventional gasoline internal 

combustion engine with an electric motor powered by electricity recovered 
through regenerative braking to improve the efficiency of gasoline use.

HFCV A vehicle that is similar to a BEV in that it is propelled by an electric motor, 
except that the vehicle is refueled with compressed hydrogen, which is 
converted electricity on board the vehicle by a hydrogen fuel cell.

NGV An internal combustion engine vehicle, similar to a conventional gasoline 
vehicle, that has been modified to run on compressed natural gas.

PHEV A plug-in hybrid vehicle, similar to an HEV, except that it has a larger battery 
that provides a limited range of fully electric driving, and which can be 
plugged in to recharge the battery.
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revenue, experience, and scale that could lead to improvement. These dynamics are 
further complicated by substantial uncertainty in factors that influence the attractive-
ness of AFVs, including: consumer preferences for vehicle features; the future price of 
gasoline; regulations mandating AFV deployment (as in California) or the CAFE regu-
lations; and the rate at which key technologies, such as the storage capacity and costs 
of lithium-ion batteries now used in electric-drive vehicles, can improve.

Figure 1.  US Monthly Sales of Alternative Fuel Vehicles 
(1 gallon ≈ 3.8 litres. Therefore $2/gallon ≈ $0.53/litre, $4/gallon ≈ $1.05/litre).
Data Sources: HybridCars.com (2016), EIA (2016b)

Figure 2.  Sales-Weighted Fuel Economy (Window Sticker) of New Vehicle Sales  
(20 mpg ≈11.8 L/100 km, 25 mpg ≈ 9.4 L/100 km).
Data Sources: UMTRI (2016), EIA (2016b)
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Computer-based models therefore play an important role in supporting decision-
making about automotive technology diffusion, and many such models exist for the 
United States. For example, the ‘CAFE Compliance and Effects Modeling System’ 
developed at the Volpe National Transportation Systems Center (commonly referred to 
as the ‘Volpe Model’) is used to calculate the costs and benefits of CAFE regulations 
for consumers, manufacturers, and the environment (Volpe, 2017), supported by the 
‘Greenhouse Gases, Regulated Emissions, and Energy use in Transportation Model’ 
(GREET) developed by the Argonne National Laboratory, which calculates full life-
cycle energy and emissions impacts of numerous fuel and vehicle technology combi-
nations (ANL, 2015). However, these spreadsheet models are opaque and focus on 
market segments, powertrain technologies, and fuel pathways in fine detail. Substantial 
time and effort is required to understand and interrogate these models, and alternative 
scenarios cannot be readily compared, impeding the development of effective mental 
models about the interaction of feedbacks including fleet turnover, technological 
change, consumer learning, and infrastructure coevolution. The Market Acceptance of 
Advanced Automotive Technologies (MA3T) model developed at the Oak Ridge 
National Laboratory for the DOE Vehicle Technologies Program makes significant 
advances in this regard, articulating an explicit causal structure that includes behav-
ioral factors such as consumers’ loss aversion and access to charging infrastructure, 
demonstrating the behavior of several pre-specified scenarios through the web-based 
MA3T MiniTool interface (ORNL, 2017). Even so, the MA3T interface does not sup-
port the type of interactive experimentation and rapid feedback that is essential if users 
are to develop their own learnings and improved mental models (Sterman, 2014a).

The consequences of inadequate model support are that industry stakeholders must 
rely on their intuition to inform decision-making, a method prone to errors in under-
standing dynamics including accumulation, time delays, and nonlinearities (Sterman, 
1994). The history of efforts to promote AFVs in the US is characterized by “sizzle 
and fizzle”, in which repeated efforts to introduce technologies ranging from hydrogen 
and biofuels to electric vehicles have collapsed when the initial burst of enthusiasm 
and investment fails to deliver tangible progress (Stewart, 2010). Short-lived incentive 
programs (Berman, 2011, Dillon & Megerian, 2016), unrealistic deployment targets 
(Tuttle, 2015), and inconsistent firm technology strategies (Griemel, 2014) suggest 
that industry stakeholders lack a shared understanding of the extent, timing, and coor-
dination of decisions that are necessary to create markets for AFVs that are sustainable 
not only ecologically but also economically.

In this article we introduce Driving the Future (DtF), a management flight simula-
tor that supports improved policy and strategy decision-making about the diffusion of 
AFV technologies in the United States. The DtF model is technology-neutral, and the 
simulator does not favor a specific market outcome. DtF enables users to implement a 
variety of policy and strategy measures for analysis of the market from the perspective 
of multiple different stakeholders. DtF is accessed through a freely available web 
interface (http://bit.ly/DtFsim) that can be easily understood without prior knowledge 
by a wide range of stakeholders, from automaker executives and policymakers to the 
general public. Because future technology pathways in the US automotive market are 
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inherently uncertain, the goal of the simulator is not to generate predictions about the 
future, but to help users develop insights about how the market may respond to policy 
and strategy measures. Opportunities for learning therefore exist in the comparison of 
scenarios that implement differing suites of policy and strategy measures.

Model

DtF is a feedback-rich behavioral model that simulates the composition of the US 
light-duty vehicle fleet over time and the energy and environmental impacts that result. 
DtF is parameterized for the fleet size, vehicle technology mix, fuel pathways, and 
policy landscape in the US today. The model represents eight vehicle platforms and six 
compatible fuels (Table 2).

The fleet of vehicles of each platform on the road accumulates new vehicle sales less 
vehicle retirements that occur due to old age and crashes. The market share of each vehicle 
platform in the model is contingent on: (i) the utility of that platform, and (ii) the willing-
ness of consumers to consider that vehicle platform in their purchase decision. Consumers 
will only consider purchasing a platform when they are sufficiently familiar with it that 
they are willing to include it in their consideration set (Hauser & Wernerfelt, 1990). 
Achieving this consideration requires consumers to learn about the platform through social 
interactions such as seeing commercials on television, discussions with friends who have 
purchased it previously, and observing the vehicles in use. Consumer consideration of each 
vehicle platform accumulates with social exposure to that technology from advertising and 
word-of-mouth. The utility of each vehicle platform depends on its attributes (including 
purchase price, operating cost, greenhouse gas emissions, and refueling convenience), 
which evolve through feedbacks including the coevolution of refueling infrastructure with 
fuel demand, and learning-by-doing and R&D investment by producers that lead to cost 
reductions.

The DtF model has various simplifications and limitations, as all models do. For 
example, the model does not distinguish among vehicle body styles, concentrating on 
consumer choices between competing powertrain technology platforms; a single 

Table 2.  Vehicle Platforms and Fuel Compatibility.

Fuel
Platform Gasoline Electricity Diesel

Compressed 
Natural Gas

Ethanol 
(E85) Hydrogen

GAS   
HEV   
PHEV    
BEV   
DIESEL   
NGV   
BIO   
HFCV 
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representative variant of each technology platform is available to consumers; the used 
vehicle market is not represented; and the model does not disaggregate regional mar-
kets within the United States. More broadly, the model represents the existing market 
structure in the United States currently dominated by privately owned vehicles, and 
does not yet capture emerging technologies such as car sharing, mobility services, and 
hybrid forms of public-private transportation that are being developed in different 
markets around the world. DtF is therefore complementary to more detailed models, 
providing important dynamic insights to users who are mindful of these limitations, 
and has been used successfully to facilitate discussions with stakeholder groups 
including automotive industry executives, students, and the general public.

We introduce the core structure of the model below, describing our modeling approach 
and then elaborating on the formulations and behavior of key sub-models. We first describe 
the fleet model that tracks the composition of the on-road vehicle fleet over time. Second, 
we describe the consumer choice structure used to estimate the market share of new vehi-
cle sales achieved by each vehicle platform. We then elaborate on the three main feedbacks 
in the model: the accumulation of consumer consideration; the co-evolution of refueling 
infrastructure; and endogenous technological change. Full documentation of the model is 
available at: http://bit.ly/DtFdocumentation.

Modeling Approach

The DtF model is developed using System Dynamics, a modelling approach used for 
the analysis of complex social, economic, environmental, and human systems. System 
Dynamics was developed by Prof. Jay Forrester at the Massachusetts Institute of 
Technology in the 1950s, who recognized that the principles of feedback control being 
used in engineering could also be used in the management of large-scale real-world 
systems, from the performance of organizations (Forrester, 1961), to cities (Forrester, 
1969) and environmental sustainability (Meadows, 1972, Meadows, Randers, & 
Meadows, 2004).

Central to System Dynamics is the concept of feedback: the behavior of a system is 
viewed as an endogenous consequence of the interactions that occur between the ele-
ments in that system. Feedback loops exist when the consequences of an action travel 
through a system and return, potentially changing the state of the system and influenc-
ing future behavior (Richardson, 1991). Two types of feedback loops exist. Loops are 
labeled ‘reinforcing’ when the consequences of an action lead to more of that action 
occurring subsequently. For example, the accumulation of interest earned on a bank 
balance increases the bank balance, which will lead to even more interest being earned 
in future (without withdrawals). Loops are labeled ‘balancing’ when the effect of an 
action is to counteract the initial action. For example, if a room gets cold, the thermo-
stat turns on the heating system, which will be heating the room until the temperature 
of the room becomes equal to the number on the dial of the thermostat, which then 
turns off the heat. Alternatively, if in any simple market the demand is higher than the 
supply, it would increase the prices, which would force some potential buyers to drop 
out and decrease the demand, thus returning the system to the equilibrium where 
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demand is equal to supply. All balancing loops are working towards bringing the sys-
tem to an explicit goal. For example, a hot cup of tea left sitting on a table will cool at 
a progressively slower rate until it is the same temperature as the ambient temperature 
in the room. The other key building blocks of System Dynamics models are stocks and 
flows. Stocks are accumulations of flows that indicate the state of the system and 
which are the basis for future action. For example, the amount of money in a bank 
account is a stock, which influences the amount of interest that is earned on that 
account. Stocks decouple trajectories of flows. For example, if a net flow to a stock 
becomes zero or even negative, the stock doesn’t disappear immediately, as it takes 
time to drain it, similar to a bathtub.

Using these elements, the causal structure of a system can be articulated in a Causal 
Loop Diagram such as Figure 3, which shows the high-level structure of the DtF 
model. Stock variables are indicated with boxes, while flows are visualized as a pipe 
governed by a valve. Variables are linked by causal arrows, each labelled with a polar-
ity indicating the nature of the causal relationship. A ‘+’ indicates that, ceteris paribus, 
an increase (decrease) in the causal variable leads to an increase (decrease) in the 
dependent variable. A ‘–’ indicates that, ceteris paribus, an increase (decrease) in the 
causal variable leads to a decrease (increase) in the dependent variable (Sterman, 
2000). Hash marks on a causal arrow indicate a delayed effect. For example, refueling 
infrastructure lags fuel demand due to the time required for fueling infrastructure pro-
viders to determine that changes in fueling capacity are needed, and then to select 
locations, acquire permits, and build the capacity. Feedback loops are then labelled 

Figure 3.  Model Overview.
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with an ‘R’ to denote a reinforcing loop, or a ‘B’ to denote a balancing loop, based on 
the net effect of the causal influences that comprise that feedback loop. Figure 3 high-
lights three key reinforcing loops that govern AFV diffusion. For example, in the infra-
structure coevolution feedback, if more BEVs are sold, the number of BEVs on the 
road increases, increasing demand for recharging, leading the construction of more 
charging stations, making driving a BEV more attractive, leading to yet more sales. If 
operating virtuously, as described here, these reinforcing loops should result in expo-
nential growth in BEV adoption. However, these same reinforcing feedbacks can oper-
ate as vicious cycles: with few BEVs on US roads, demand for charging stations is 
low, so few new stations are built, meaning that recharging a BEV remains difficult, 
and so few new BEVs are sold. This example highlights the challenge of successful 
AFV introduction: new technologies that are initially expensive, unfamiliar, and 
require their own specialized refueling infrastructure are competing against a deeply 
established incumbent (gasoline) that is affordable, accepted by consumers, and offers 
ubiquitous refueling stations.

To simulate the dynamics resulting from these feedbacks, the model is formalized 
as a system of coupled, non-linear, ordinary differential equations. The model is based 
on established formulations and grounded in empirical studies. For example, we use 
the standard nested multinomial logit formulation in our representation of consumer 
choice (Train, 2009), and power-law learning curves in our representation of endoge-
nous technological change (Argote and Epple 1990).

Vehicle Fleet

The model is parameterized for the US light duty vehicle market, assuming a constant 
total vehicle fleet size of 240 million vehicles, and an average vehicle life of 15 years, 
resulting in 16 million new vehicle sales/year.3 We represent the vehicle fleet with a 
standard vintaging structure (Sterman, 2000), with 4 cohorts, and cohort-specific haz-
ard rates of retirement that increase with vehicle age (Greenspan & Cohen, 1999). The 
vehicle fleet in 2000 was comprised almost entirely of gasoline vehicles, with only 
100,000 diesel vehicles and no other platforms present. The fleet composition then 
changes over time in response to the mix of new vehicles sold and on-road vehicles 
retired due to crashes and aging.

The model tracks the greenhouse gas (GHG) emissions of each vehicle platform on 
a per-mile basis in metric tons of CO2-equivalent, which are then aggregated to calcu-
late annual GHG emissions by vehicle platform, by fuel, and for the entire fleet, based 
on vehicle fleet composition and platform vehicle-miles travelled. GHG emissions are 
calculated using well-to-wheels emissions factors from GREET (2016), which include 
both tailpipe emissions during vehicle operation and emissions from upstream fuel 
production. The model includes cost and emissions assumptions for multiple upstream 
fuel pathways, including conventional and renewable pathways for electricity and 
hydrogen. The model also allows for the GHG emissions from the US electrical grid 
vary endogenously as the mix of renewable and fossil generation sources responds to 
the costs of renewable versus fossil inputs to electricity production.
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Consumer Choice

New vehicle buyers in the United States have a choice from a wide range of makes, 
models, body styles, and powertrain technologies. The choice of powertrain technol-
ogy - internal combustion powered by gasoline or diesel, hybrid electric, full electric, 
biofuel, hydrogen fuel cell, etc., hereafter referred to as the ‘vehicle platform’ - strongly 
conditions energy consumption and environmental impacts. The model therefore 
focuses on consumer choices among the various platforms, and does not represent 
individual makes or models.

Drivers who need to replace their vehicle choose whether to buy another of the 
same platform or switch to another platform. For example, drivers of conventional 
gasoline powered vehicles may choose to buy another such vehicle or switch to a 
battery-electric vehicle. Formally, we estimate the fraction of drivers currently driving 
platform i who buy platform j, σ ij, using the nested multinomial logit (NMNL) struc-
ture shown in Figure 4 (Train, 2009).

We estimate the utility of platform j, uij, as a linear function of the attributes a of the 
platform j, χja, and consumers’ willingness-to-consider that platform, Cij:

	                                   u Cij
a

a ja ij= + ( )∑β χ ln 	 (1)

where ba is vector of parameters reflecting the relative weights that consumers place 
on the attributes of vehicle platform j.

For the purpose of simulating consumer choice, we adopt coefficients for the attri-
butes of the vehicle as estimated by Brownstone, Bunch and Train (2000). In addition, 
we include the costs to drivers of searching for fuel and refueling: the longer drivers 
spend finding a fuel/charge point and refueling/recharging their vehicle, the lower the 
utility of the vehicle will be—having to go out of one’s way to find a charge point for 
a BEV and waiting hours to recharge the battery lowers the utility of BEVs compared 
to gasoline vehicles, which can be refueled in minutes at multiple, convenient loca-
tions. We also add the effect of platform scope, assuming that there will be a wider 
range of makes and models available to consumer as that platform grows, increasing 
platform utility. These parameters, drawn from existing studies, are shown in Table 3:

Consumer Consideration

Willingness-to-consider Cij captures the extent to which drivers of platform  i are suf-
ficiently familiar with platform j that they include that alternative in their consider-
ation set, the subset of alternatives that they evaluate in detail to purchase (Hauser and 
Wernerfelt 1990). We model consideration as a stock that represents the “…cognitive 
and emotional process through which drivers gain enough information about, under-
standing of, and emotional attachment to a platform for it to enter their consideration 
set” (Struben & Sterman, 2008). The fractional willingness of consumers currently 
driving platform i to consider purchasing platform j increases with social exposure to 
platform j, and erodes as the salience and relevance of older experience and exposure 
to the platform fade:
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dC

dt
z C C

ij
j ij ij= −( ) −1 φ 	 (2)

where zj is the rate at which consumers receive social exposure to platform j and  φ is 
the fractional rate of forgetting. Total social exposure, zj, is the sum of the effect of 
marketing about platform j, z j

m
, and the effect of word-of-mouth arising from drivers 

of platform j, z j
d . Word-of-mouth is an important reinforcing feedback that contrib-

utes to consumer acceptance of new technologies: as the installed base of platform j 
grows, more opportunities are created for potential buyers to learn about the platform 
from previous buyers, resulting in greater adoption of the platform.

Consideration is critical in determining the share of each platform: If consumers 
driving platform i have no awareness of platform j then the market share of platform j 
among those consumers, σ ij , is zero regardless of the objective utility of that platform, 
because those drivers simply don’t know about and therefore cannot consider purchas-
ing platform j. Driver consideration of a new platform is zero prior to its introduction 

Figure 4.  Nested Logit Consumer Choice Structure.

Table 3.  Utility Function Coefficients.

Coefficient Units Value Reference

Purchase Price 1,000$/ln(1,000$) –0.361

Brownstone,  
Bunch and  
Train (2000)

Operating Cost cents/mile –0.170
Acceleration 0-30mph (seconds) –0.149
Top Speed 100*miles/hour 0.641
Range 100*miles 1.268
Range squared (100*miles)2 –0.116
Emissions dimensionless index –0.673
Fuel Search Cost cents/mile –0.170 Equal to Operating Cost
Platform Scope dimensionless 0.500 Assumption

 

 
 

 



12	 Simulation & Gaming 00(0)

to the market as consumers necessarily have no experience with or social exposure to 
platforms that do not exist; consideration must build over time through marketing and 
other means (such marketing could begin prior to commercial introduction).4

Refueling Infrastructure Co-Evolution

The availability of refueling infrastructure is a critical enabler of AFV diffusion. 
Without easy access to refueling stations, the search for fuel is prohibitively expensive 
and time-consuming, limiting the effective range of the vehicle through “range anxi-
ety” as consumers seek to “top off” to avoid unplanned out-of-fuel situations. The 
result is the infrastructure-AFV chicken-and-egg problem: drivers are reluctant to buy 
AFVs unless they believe they can get fuel anytime and anywhere, while infrastructure 
providers will not build new refueling infrastructure unless they are sure there will be 
demand for the fuel. Vehicles and refueling stations therefore co-evolve in a reinforc-
ing feedback that can aid the formation of AFV markets, but that can also prevent AFV 
diffusion when no refueling infrastructure exists.

Available fueling infrastructure increases with the completion of new infrastructure 
construction and decreases with the retirement of old infrastructure. The rate at which 
fueling infrastructure construction starts depends on the desired amount of infrastruc-
ture for each fuel type f, I f

d
 , which is determined by the stock of the existing infra-

structure (If) and effects of profitability (bp) and utilization (bu) of the existing refueling 
stations (Equation (3)). The construction of new infrastructure is more attractive when 
existing stations are more profitable, and when their utilization of existing stations is 
high—both salient signals to fuel providers that new capacity is warranted.

                                                              I If
d

f p u= β β 	 (3)

The availability of refueling infrastructure influences the utility of AFV platforms 
in multiple ways. As the number of refueling stations increases, the opportunity cost 
of the time spent searching for fueling decreases, the expected wait time prior to refu-
eling decreases, and the risk of running out of fuel prior to refueling decreases, all 
making compatible AFV platforms more attractive for consumers. The availability of 
refueling infrastructure also influences the effective range of AFVs, because drivers 
maintain a fuel buffer, a portion of their vehicle’s range that they reserve for the search 
for fuel. All else equal, greater fuel availability allows drivers to maintain a smaller 
fuel buffer and refuel less often. The DtF model assumes that drivers maintain a buffer 
that minimizes their total cost of refueling.

Automaker Capabilities and Technological Change

Currently available AFVs are inferior to conventional gasoline vehicles today on the 
basis of performance relative to price, hampered in part by high costs for key compo-
nents such as lithium-ion batteries and hydrogen fuel cells, but also in terms of range, 
passenger and cargo space, and other dimensions. However, new technologies 
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commonly improve over time, as manufacturers achieve improvements through R&D 
and learning-by-doing (Argote & Epple, 1990; Arrow, 1962). Endogenous technologi-
cal change is represented in the DtF model for: (i) the cost of individual vehicle sub-
systems, (ii) the fuel economy of internal combustion engines, and (iii) the power 
(dispensing rate) of electric vehicle recharging stations.

The cost of each vehicle platform j is modeled as the sum of the costs of each  
subsystem in that vehicle, including the body, powertrain, energy storage, and other 
platform-specific technologies. Cost reductions in each vehicle subsystem level  a are 
represented using standard power-law learning curves cumulative in: (i) experience 
from manufacturing (learning-by-doing), and (ii) investment in R&D:

                                  C C
E

E

R

R
j a j a

j a

j a

j a

j a
, ,

,

,

log

,

,

log

=
























−( )
0

0

1

0

12 2β −−( )β
	 (4)

where for platform j and subsystem a, Ej,a  and Rj,a are cumulative experience and 
R&D investments, respectively, Ej a,

0  and Rj a,
0  are initial experience and R&D invest-

ments, respectively, and b is the learning rate. Learning is assumed to spill over across 
platforms to the extent that vehicles subsystems are common to multiple platforms. 
For example, vehicle light-weighting through e.g. carbon fiber composite body panels 
are applicable to all platforms, but improvements in internal combustion engine per-
formance does not spill over to electric or fuel cell vehicles.

The fuel efficiency of each vehicle platform Fj improves over time as a result of 
two separate mechanisms – learning-by-doing in production, and pressure on auto-
makers to comply with CAFE that affects vehicle design choices and R&D 
investments:

                                                       F Fj j FE CAFE= 0δ δ 	 (5)

where δFE   is the effect of learning on fuel efficiency, δCAFE  is the effect of CAFE 
policies, and Fj

0  is a reference (initial) fuel efficiency of platform j  at the time of 
introduction to the market.

First, efficiency improves via a standard power-law learning curve cumulative in 
R&D spending for fuel efficiency, which is a fixed fraction of total platform revenue:
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where RFE and RFE
0  are cumulative and initial R&D investments in fuel efficiency 

respectively, and bFE is the learning rate for fuel efficiency. Second, the effect of 
CAFE on fuel efficiency increases asymptotically over time, applying maximum pres-
sure in the year 2025 when full CAFE compliance is required:
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Finally, the power (dispensing rate) of electric vehicle charging stations is modeled 
using a power-law learning curve cumulative in battery sales, comprising endogenous 
battery sales in the United States from the model plus assumed battery sales globally, 
reflecting the accumulation of automaker experience with electric vehicle power elec-
tronics. Full description of the model structure is available in the model documenta-
tion (http://bit.ly/DtFdocumentation).

Model Calibration and Testing

The usefulness of the DtF model depends on the extent to which the model is robust, rep-
licating the patterns of diffusion that have been observed to date while also generating 
plausible diffusion trajectories across a wide range of alternative futures. Calibration to 
historic data on AFV diffusion in the United States is challenging, because the AFV market 
remains embryonic. AFVs account for no more than 4% of new vehicle sales to date, 
meaning the dynamics of diffusion are not readily observable and econometric estimation 
of parameters and comparison of model behavior to historical data are not yet possible. The 
lack of such data is an inevitable characteristic of any model to be used prospectively for 
markets and products that do not yet exist or have not yet been adopted; by the time suffi-
cient data are available, the opportunity to shape the pattern of diffusion will have passed. 
We therefore build confidence in the model through careful calibration and extensive test-
ing. We consulted numerous subject matter experts, including industry executives, policy-
makers and researchers, and carried out extensive sensitivity tests to ensure that the 
resulting diffusion dynamics are both internally consistent and robust across a wide range 
of scenarios and conditions, e.g., a wide range of future gasoline prices, different learning 
curve strengths for AFV technologies, and various consumer preferences (See Appendix 1 
for analysis of the model’s sensitivity to key parametric assumptions).

User Interface

The DtF interface is web-based and compatible with all major browsers on PCs and 
tablets, developed in collaboration with Forio (www.forio.com) using the Forio 
Epicenter platform. Here we describe how the interface allows the user to rapidly 
explore the dynamics of AFV diffusion under different technology, policy, and strat-
egy scenarios. An instructional video demonstrating the interactive behavior of the 
simulator is available at: http://bit.ly/DtFdemo.

Policy and Strategy Levers

DtF includes a wide range of policies and strategies automotive industry stakeholders 
may use to influence the trajectory of AFV diffusion (Table 4). These interventions 
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include policies and strategies that have been implemented in the US automotive mar-
ket or considered for implementation.

Users can vary both the availability and extent of interventions as the simulation 
progresses, implementing policies and strategies individually or concurrently. The 
model reports the total cost of policies and strategies implemented by stakeholder 
group, aiding assessment of the economic and political viability of the decisions 
implemented by the user.

User Screens

Scenario assumptions.  Before starting a simulation, the user is presented with a screen 
defining the high-level scenario assumptions (Figure 5). Here users select options 
including when each vehicle platform is introduced into the market, the strength of the 
learning curves for vehicle efficiency and for new fuels (bio, hydrogen), and future 
prices for gasoline, electricity, and natural gas.

After choosing the scenario assumptions, users are taken to the Simulator 
Dashboard, which provides graphs and data for key variables that show the current 
state of the market (Figure 6). Upon arriving at the Dashboard the simulation advances 
to the year 2015 using historical data, at which time the user takes over management 
of the market through to year 2050.5 At any time, the user can alter the mix of policies 
and strategies implemented in the market (shown in Table 4), then advance a chosen 
number of years. After advancing, the dashboard displays the results, providing the 
user with immediate feedback on the outcomes of their decisions. Game play contin-
ues iteratively until the end of the simulation in 2050. At any time the user can choose 
to either: (i) Restart the simulation, keeping the existing policy and strategy settings in 
place, or (ii) Reset all decisions to the default levels. The first approach is useful for 
users seeking to refine their strategy rapidly through successive trials, while the latter 
allows users to start a new set of simulations from scratch. In our experience, users 
develop their understanding of the dynamics and challenges of creating successful 
AFV markets faster when they carry out many simulations rapidly rather than laboring 
over the specifics of a single scenario.

The dashboard provides a range of tools that aid the user’s exploration of the simu-
lation. First, clicking on any of the graphs on the dashboard provides a larger view of 
that graph along with more detailed supporting information. For example, clicking on 
the dashboard’s greenhouse gas emissions graph displays graphs of both total fleet 
greenhouse gas emissions over time, and emissions per mile by vehicle platform over 
time. Second, clicking on vehicles and fuel types in the dashboard legend toggles these 
data series on/off in the dashboard graphs so that users can choose which data to high-
light. Third, users can save simulation runs and compare them to other runs through 
the DtF interface, or download them in CSV format for further analysis.

Policy and strategy decisions.  The lower half of the screen, accessible either by scrolling 
down or clicking the Policies button at the top of the screen, allows users to choose the 
mix of policies and strategies currently active in the simulation (Figure 7). Decisions 
are implemented by moving sliders across a plausible range of policy values. The user 
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can also override the maximum value of the slider by typing any desired value into the 
field provided.

Stakeholder summary.  The stakeholder summary view accessed from the dashboard 
provides an overview of indicators showing the outcomes important to key 

Table 4.  Policy and Strategy Interventions.

Policy/Strategy Effect Units

Government Incentives  
AFV Tax Incentive 

(by Vehicle Platform)
Lowers the purchase price of 

AFV platforms to encourage 
consumer adoption.

$/vehicle

Refueling Infrastructure Tax 
Incentive (by Fuel)

Lowers the cost of refueling 
station construction to 
encourage faster development 
of refueling infrastructure by fuel 
providers.

$/pump or charge point

Refueling Infrastructure 
Introduction Program 
(by Fuel)

Construction of refueling stations 
to make alternative fuels 
available for AFV drivers.

Pumps or charge 
points/year

Taxes  
Carbon Tax Increases the cost of fuels in 

proportion to their carbon 
content.

$/ton CO2e

Gas Tax Increases the cost of gasoline and 
diesel fuels.

cents/gallon gasoline-
equivalent

Vehicle Miles Travelled 
(VMT) Tax

Increases the cost of driving in 
proportion to the number of 
miles driven.

cents/mile

Automaker Strategies  
AFV Subsidy 

(by Vehicle Platform)
Lowers the purchase price of 

AFV platforms to encourage 
consumer adoption.

$/vehicle

Additional Marketing 
(by Vehicle Platform)

Increases consumer consideration 
of AFV platforms to encourage 
consumer adoption.

$Million/year

Investment in Fuel Economy 
R&D

Alters the fraction of total 
automaker R&D spending that is 
invested in improving vehicle fuel 
economy.

% of auto industry 
revenue

Fuel Providers  
Source of Electricity for EV 

Charging
Mandate the use of renewable 

electricity for EV charging.
conventional or 

renewable
Source of Hydrogen for 

HFCV Refueling
Mandate the use of renewable 

hydrogen for HFCV refueling.
conventional or 

renewable
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stakeholders including consumers, the environment, fuel providers, governments, and 
automakers, allowing users to assess the costs and benefits of their decisions (Figure 
8). The stakeholder view also enables the simulator to be used in a multi-player mode 
where different people play the role of different stakeholders, each focused on the 
outcomes they care most about.

Figure 5.  Scenario Assumptions.

Figure 6.  Dashboard.
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Class Facilitation

The simulator includes an administrator interface enabling instructors (teachers or 
workshop facilitators) to see the simulation results of class participants in real time, 
sort participants’ scenarios according to key variables such as the market shares of 
AFV platforms, and download the results of all participants for further analysis. 
Instructors can also set up a “class” consisting of particular settings all participants 
will use. Instructors choose the assumptions for each scenario, and can set up as many 

Figure 7.  Policy and Strategy Settings.

Figure 8.  Stakeholder Summary.
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as they like to provide a structured learning sequence. For example, the instructor may 
set up a first scenario in which gasoline prices remain low, another in which they rise, 
and another in which a carbon price is enacted.

Illustrative Scenarios

Three illustrative scenarios demonstrate the behavior of the DtF model: a baseline 
scenario and two scenarios that implement suites of policies designed to accelerate 
consumer adoption of electric vehicles.

The baseline scenario uses the default assumptions and default (zero) policy and 
strategy interventions. The baseline provides a reference to evaluate the impact of 
policy tests (Figure 9). The baseline scenario is counter-factual, in that it does not 
include policies that exist in the United States currently, such as federal (and some 
state) tax incentives for the purchase of plug-in electric vehicles. In the baseline, sales 
of conventional hybrid vehicles (HEV) grow steadily as consumers become increas-
ingly willing to consider HEVs in their purchase decision, and as HEVs become 
cheaper and available in a wider range of makes and models as a result of learning-by-
doing and R&D. In contrast, sales of all other AFV platforms remain negligible. 
Because vehicle costs for those platforms remain high, few are willing to buy; without 
an emerging market to generate social exposure, consumers are reluctant to include 
these vehicles in their consideration set. Further, without demand for electric vehicle 
charging or other alternative fuels, investment in refueling infrastructure remains low, 
limiting fuel availability and suppressing purchases even among the few consumers 

Figure 9.  Baseline Scenario.
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willing to consider AFVs. Importantly, the fuel economy of conventional and hybrid 
(gasoline powered) vehicles increases through learning and R&D. The resulting 
increase in average fleet economy reduces total GHG emissions by 48% in year 2050 
relative to the year 2000, and also leads to a drop in the number of gas stations, because 
more efficient vehicles reduce gasoline consumption. However, that very increase in 
fuel economy for conventional gasoline vehicles (including HEVs) makes other AFVs 
even less attractive, further suppressing their emergence. In sum, under the baseline 
(no action) scenario, promising AFV technologies cannot get over the tipping point: 
the reinforcing feedbacks that could lead to greater AFV adoption, more fueling infra-
structure, lower prices, higher performance, and greater consumer awareness all work 
as vicious cycles that suppress AFV adoption.

Next, we present a scenario that aims to overcome the barriers that prevent con-
sumer adoption of the plug-in electric vehicles (PHEVs and BEVs) in the baseline 
scenario. Here we introduce tax incentives ($5,000/vehicle) and manufacturer subsi-
dies ($5,000/vehicle), lowering the high prices of HEV, PHEV, and BEV vehicles, and 
launch an aggressive marketing campaign ($250M/year) to build consumer awareness 
of hybrid and electric vehicles (Figure 10).

The result is a market still dominated by HEVs, but which now also sees significant 
consumer adoption of PHEVs. Subsidies make PHEVs and BEVs more attractive, and 
the marketing campaign builds consumer acceptance of these vehicles. These actions 
boost adoption of PHEVs, but not BEVs: while PHEVs use the ubiquitous gasoline 
fueling infrastructure when an electric charge point is not available, the lack of pub-
licly accessible charging infrastructure severely limits the effective range of BEVs. 
The resulting range anxiety has a strong negative effect on the utility of BEVs to con-
sumers, suppressing BEV adoption despite substantial incentives and marketing effort. 
GHG emissions in 2050 fall by 51% in 2050 relative to the year 2000, a marginal 
improvement over the baseline reduction of 48%. Further, the policies required are 
costly, with automakers losing $550 billion cumulatively by the year 2050 due to the 
cost of subsidies, and governments spending cumulatively $1.8 trillion by the year 
2050 in tax incentives.

The next scenario aims to overcome the infrastructure chicken-egg dynamic for 
BEVs. We maintain the subsidy and marketing policies in the second scenario and add 
a program of government-funded charging station construction (1,000 charging points 
per year) and incentives for infrastructure deployment by private firms ($500 per 
charging point). We also introduce a carbon price that increases linearly to $300/tCO2 
by the year 2050 (Figure 11); such a tax would raise gasoline prices by approximately 
$2.63/gallon ($0.69/liter) by 2050. The results show a market in the early stages of a 
widespread transition away from conventional gasoline vehicles. Sales of HEVs grow 
rapidly, then peak and decline around 2035 as consumers switch to PHEVs and BEVs. 
The government-sponsored infrastructure program and incentives kick-start the 
deployment of recharging stations. Freed from range anxiety, consumers become more 
willing to consider and purchase PHEVs and BEVs; as they do, the utilization and 
profitability of charge points rise, leading to an economically self-sustaining market 
for charging infrastructure. At the same time, the carbon price raises the cost of driving 
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gasoline powered vehicles, while growing adoption of PHEVs and BEVs drives their 
prices down through scale, R&D, and learning by doing, further boosting their attrac-
tiveness and market share. With these policies the market for electric vehicles is able 
to cross the tipping point so that the reinforcing feedbacks that previously suppressed 
demand now work as virtuous cycles of greater adoption, lower cost and higher per-
formance, additional charging infrastructure, and still greater adoption. As the market 
shifts to electric vehicles, demand for gasoline falls, and with it, the number of gas 
stations.

GHG emissions by 2050 are now 59% below the year 2000 level. However, the 
strategy is even more costly, with automakers losing $850 billion per year cumula-
tively by the year 2050, and governments spending $2.2 trillion cumulatively by the 
year 2050 including tax incentives for vehicles and infrastructure.

These scenarios suggest that a widespread transition away to gasoline vehicles 
towards electric vehicles is possible by 2050, achieving a significant reduction in 
GHGs. However, doing so requires significant initial investment in policies to increase 
AFV affordability, fueling infrastructure, and consumer awareness and willingness to 
consider these vehicles. The challenge for users is to explore how they can achieve 
market outcomes that are sustainable both ecologically and economically; that is, how 
to achieve the deep cuts in GHG emissions needed to mitigate climate change by creat-
ing the conditions for a profitable and healthy automotive industry, and associated fuel 
supply chain and delivery infrastructure.

Figure 10.  EV Promotion Scenario.
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Simulator Use

We now describe how DtF can be used to facilitate learning about AFV diffusion 
dynamics in group settings. Although the simulator can be used by individuals at any 
time through the web interface, our experience suggests group play in which two or 
three people work together on the same scenarios can create a stimulating environment 
for learning. Putting participants in a situation in which they must agree on policies 
and strategies stimulates discussions that foster the development of shared knowledge 
and improved mental models. We first describe a general structure for DtF simulation 
workshops. We then describe results we have observed running workshops with a 
range of audiences.

Workshop Design

Simulation workshops using DtF can be run successfully in 60-120 minutes, with 
4-100 participants. The only materials needed for the workshop are a sufficient num-
ber of computers or tablets with internet access to provide one device for each team of 
participants. No prior preparation from participants is needed. The workshop can be 
run by a single instructor, although assistants can be helpful to answer questions with 
larger groups. Table 5 outlines a workshop design we have found effective.

Figure 11.  EV Infrastructure Scenario.
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Results from Workshops

We have facilitated workshops using the protocol above with three distinct groups of 
participants. First, we have run the workshop with approximate 30 attendees at the 
International System Dynamics Conference (ISDC), the annual conference for 
researchers and practitioners in the field of System Dynamics. Second, we have run 
three workshops for approximately 100 students each in a graduate-level class, 
‘Laboratory for Sustainable Business’ (S-Lab), at the MIT Sloan School of 
Management. Third, we have run two workshops with executives from two different 
major automobile manufacturers, each with approximately 20 participants.6 In each 
case, the participants possessed a high degree of domain knowledge relevant to under-
standing the dynamics of AFV diffusion. The ISDC participants were familiar with 
systems thinking and the use of simulation models for policy analysis. The S-Lab 
students at MIT, including MBAs and graduate students in urban planning, engineer-
ing, and public policy, had strong interests in sustainability issues. The automaker 
executives, in contrast, possessed detailed domain knowledge about vehicle technolo-
gies and regulatory compliance issues. We nevertheless observed similarities in the 
approach to problem solving and lessons learned across these groups.

As in any game, participants’ first game takes more time than subsequent games as 
they go through a personal learning curve in which they discover how to make deci-
sions, what outputs are available, and how to interpret the graphs and tables available 
to them. Play accelerates quickly, however, with participants soon focusing their atten-
tion on the substance of the scenario and results instead of the game interface.

Participants typically begin with policies that have been implemented in reality and 
at modest scales, for example, tax incentives and marketing campaigns to build aware-
ness of AFVs. They discover that these policies are ineffective (as shown by the illus-
trative scenarios in Section 4). In particular, participants often launch policies including 
subsidies, price reductions, and marketing campaigns, finding that, after a few years, 
AFV market share is rising. They also observe the rising costs of their policies (for 
example, the cost of vehicle subsidies and tax breaks rises with AFV sales). Many then 
cut back the subsidies and incentives, reasoning that the AFV market will now be self-
sustaining. Instead, AFV sales often fall and the market fails to develop. In this fash-
ion, participants discover for themselves the dangers of the “sizzle and fizzle” pattern 
so often observed in prior attempts to introduce AFVs.

After several rounds of game play, participants frequently comment about the dif-
ficulty of creating a self-sustaining AFV market. The large array of information avail-
able to them in the simulation interface enables them to discover the causes of these 
results for themselves, including: the long delays in fleet turnover, which slows the 
accumulation of experience with and social exposure to AFVs, slowing adoption; the 
importance of building fueling/charging infrastructure; the way in which efficiency 
improvements for conventional gasoline vehicles helps cut GHG emissions but also 
reduces the relative attractiveness of AFVs; and so on. They also commonly discover 
that the short-run costs of the policies needed to create a self-sustaining AFV market 
are high, and conclude that coordination across multiple stakeholders, including 
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Table 5.  Simulation Workshop Structure.

Sequence of Events Description

1.  Introduction •• The instructor introduces the sustainability challenges 
associated with the US automobile fleet, such as fossil fuel 
consumption, greenhouse gas emissions, and urban air 
pollution. Participants are then tasked with the challenge 
of implementing policies and strategies that make the US 
automobile fleet more sustainable by the year 2050, taking the 
economic, environmental, and social consequences of those 
decisions into account.

2. � Demonstration of 
Driving The Future 
Simulator

•• The instructor introduces the DtF interface. First, the 
instructor ensures that all participants are able to open the 
simulator and navigate to the dashboard.

•• Next, the instructor demonstrates how to use DtF to simulate 
scenarios. The instructor first leads the participants in 
simulating a base case with no policy or strategy interventions. 
The instructor then demonstrates a simple policy, such 
as the introduction of tax incentives for HEV adoption. 
Faster diffusion is observed, but at considerable cost to the 
government, highlighting trade-offs across stakeholder groups.

3.  Policy Analysis Task •• Participants are now ready to undertake their own 
experimentation. When workshops have many participants, 
we find it effective to divide the group into several blocs, 
each representing a different stakeholder. For example, the 
group can be divided into blocs representing: (i) electric 
vehicle manufacturers; (ii) oil companies; (iii) environmental 
non-profits; and (iv) the government treasury. Participants are 
tasked with identifying a mix of policies and strategies that 
best satisfy the objectives of their stakeholder group.

•• We encourage participants to iterate through scenarios 
rapidly, making incremental changes in response to strengths 
and weaknesses they identify in their previous scenarios. 
Learning opportunities emerge from observing the results of 
many scenarios rather than laboring over the details of fewer 
scenarios.

4.  Debriefing •• As the end of the workshop approaches, the instructor leads 
a debriefing discussion with the participants, reconciling the 
findings of participants, and reinforcing key insights about AFV 
diffusion.

•• Participants are invited to contribute the mix of policies and 
strategies they consider best given the stakeholder group they 
represent, considering key metrics such as GHG emission 
reductions and total cost to automakers and governments.

•• Subsequent discussion regarding the extent to which the 
strategies chosen by each group are aligned or in conflict 
highlights the opportunities and challenges involved in 
implementation.



Keith et al.	 25

automakers, fuel providers, and federal and state governments, is likely to be required 
to generate sufficient resources to move the industry over the tipping point.

Participants also commonly discover that the displacement of gasoline-powered 
vehicles with AFVs such as BEVs does not enhance GHG emissions reductions if the 
power for the BEVs is generated from fossil fuels, as is typical in most of the US 
today. They discover that the market for AFVs and alternative fuels must coevolve 
with the transition from fossil fuels to renewable, low-carbon energy sources for the 
electric grid, leading to discussion of the potential synergies and barriers to that transi-
tion, including how the batteries in BEVs could also be used as storage to buffer the 
electric grid against variations in load and power production as intermittent renew-
ables like wind and solar become more important.

Our observations from these workshops suggest that DtF is easy to use, enjoyable 
and effective in developing insights regarding AFV diffusion. Participant evaluations 
of the experience were highly positive, including:

“The simulator is great! Great interface, super modern. I would have liked to have more 
time to play with it.”

“I love the ability to manipulate the scenarios and see how different policies interact”.

Evaluation of Simulator Effectiveness

To move beyond anecdotal information about its effectiveness, we carried out an eval-
uation of the simulator with a broader sample of American users via Amazon’s 
Mechanical Turk (MTurk) online workforce. The goal of this evaluation was to 
explore: (i) whether measurable learning could be observed as a result of using DtF; 
and (ii) whether learning outcomes were superior as a result of using an interactive 
simulator compared to more conventional learning methods. We implemented a three-
group pre-test post-test experimental design (Tiwari, 2016). Group 1, the control 
group, was assigned the task of reading a PDF report about the results of the DtF simu-
lator, including actual screenshots from 5 structured scenarios, conveying the same 
insights about AFV diffusion that are obtained from using DtF but delivered in a con-
ventional format. Group 2 was assigned the task of exploring those same 5 scenarios 
interactively using DtF, but were not provided any written interpretation of the results 
of those scenarios. Group 3 was provided both the DtF simulator as in Group 2, and 
the written interpretation of results provided to Group 1.

A sample of 210 participants were recruited from MTurk, with 70 participants ran-
domly assigned to each experimental group. Each participant received a $5 payment 
for successful completion of their assigned task, including pre-test and post-test sur-
veys. We took various steps to ensure the quality of responses, including: restricting 
participation to MTurk workers with at least 95% reputation score and completion of 
at least 500 prior MTurk tasks (Peer, Vosgerau, & Acquisti, 2014); restricting partici-
pation to MTurk workers whose IP addresses were verified to be in the United States; 
and the inclusion of attention check questions in the pre-test and post-test. The 
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demographics of our sample are broadly representative of the US population (Figure 
12), although tending to be younger (consistent with prior MTurk studies, e.g. Berinsky  
et al., 2012), and somewhat more politically progressive. Pre-test questions indicate a 
high degree of awareness about climate change, with 70% of participants answering 
that it is ‘very important’ or ‘extremely important’ for the United States to reduce 
GHG emissions, roughly consistent with public opinion as measured in nationally 
representative samples of US registered voters (Leiserowitz, Maibach, Roser-Renouf, 
Rosenthal, & Cutler, 2017). However, participants were less aware of available AFV 
technologies. Although the vast majority of participants stated being extremely famil-
iar with conventional GAS vehicles, most respondents were only moderately familiar-
ity with HEVs, PHEVs and BEVs, and not familiar at all with HFCVs.

Participants completed their assigned tasks individually. While participants were 
all instructed to spend 35-50 minutes on the task, and compensated accordingly, sig-
nificant variation occurred in how long each group spent completing their task. Group 
1 spent an average of 34 minutes on the report-only task, with a standard deviation of 
13 minutes. Group 2 spent an average of 74 minutes on the simulator-only task, with 
a standard deviation of 38 minutes. Group 3 spent an average of 101 minutes on the 
simulator + report task, with a standard deviation of 36 minutes. Participant comments 
suggest that for some people the longer time was necessary to complete the simulator 
task, while others voluntarily used DtF longer than necessary so they could explore 
their own scenarios.

We assessed participant learnings with pre-test-post-test questions in a variety of 
formats. For example, we asked participants to what extent they agreed with the 

Figure 12.  MTurk Participant Demographics.
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statement that government policy interventions are needed to build a viable market for 
AFVs (Figure 13). Here we observe a substantial increase in the percentage of respon-
dents that strongly agree with this statement upon completion of their task across all 
groups, increasing from 31% to 51% in Group 1, 22% to 56% in Group 2, and 22% to 
42% in Group 3, statistically significant at p < 0.05 in each case.

We also asked participants how they would allocate funding to promote each indi-
vidual vehicle platform across a range of possible allocation policies. The HEV results 
are particularly interesting (Figure 14), because right answers (Options A, B and D) 
and wrong answers (Options C, E, F and G) are well defined due to the fact that HEVs 
refuel with gasoline rather than charge with electricity. Here we see a statistically sig-
nificant shift away from Options E and G towards Options A, B and D for both the 
groups that used simulator (Group 2 and Group 3), but not in Group 1 that read the 
report, where an increase in selection of Option G is observed, suggesting that both 
groups using the simulator developed a better understanding of these infrastructure 
dependencies (Tiwari, 2016).

Finally, we asked the MTurk participants that used the simulator to evaluate their 
experience using DtF on a 5-point Likert scales ranging from “strongly disagree” to 
“strongly agree”. 96% of participants strongly agreed or somewhat agreed that “the 
simulator enabled you to develop an improved understanding of the AFV market and 
policy levers” (Figure 15). Similarly, 94% strongly agreed or somewhat agreed that 
“the simulator can provide a better learning opportunity than traditional reports and 
PowerPoint presentation methods” (Figure 16).

Taken together, the results of the MTurk evaluation provide compelling evidence 
that DtF is effective at helping users learn about the dynamics of AFV diffusion, and 
potentially more effective than conventional learning methods. Continued evaluation 
of DtF and other management flight simulators is a key opportunity for future work, 

Figure 13.  To What Extent Do You Agree That Government Policy Interventions Are 
Needed to Build a Viable Market for AFVs?
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for example, exploring to what extent these lessons learned persist over time (e.g. the 
user’s mental model has changed permanently), and whether these learning result in a 
superior real-world decision-making ability.

Conclusion

Driving the Future is a free, web-based management flight simulator designed to help 
people learn about the challenges of creating markets for alternative fuel vehicles that 
are sustainable both ecologically and economically. The simulator embeds an empiri-
cally grounded, behavioral, dynamic model portraying multiple automobile and fuel 
types, fueling infrastructure, and consumer choices, and enables users to rapidly 
experiment with a wide array of policies and assumptions through 2050. The simulator 
provides users with immediate feedback on the likely impacts of their decisions, 
enabling people to learn for themselves about the dynamics of the industry and to 

Figure 14.  Assume That You Are the Car Czar: How Will You Spend Money to Promote 
HEVs?

Figure 15.  To What Extent Do You Agree That The Simulator Helped You Develop an 
Understanding of the AFV Market and Policy Levers?
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discover policies that can lead to the emergence of a self-sustaining alternative vehicle 
industry.

The simulator does not favor specific outcomes – users are free to promote a wide 
array of alternative vehicles, including vehicles powered by electricity, diesel, hydro-
gen, natural gas, biofuels, and hybrids, and can implement any mix of strategies and 
policies they choose. Although future technology pathways in the US automotive mar-
ket are inherently uncertain, experimentation with an interactive market simulator 
allows users to explore for themselves the challenges and opportunities that exist for 
the development of sustaining markets for AFVs. Driving the Future has been used 
successfully in a range of settings, from individual users, to university teaching about 
sustainability issues, to workshops with senior executives from leading automakers.

Looking forward, further developing the capabilities of the DtF model is an ongoing 
opportunity. Calibration of the model to date has depended largely on expert judgement, 
due to the very low market shares of all AFV platforms to date. As more data become 
available, model parameters and relationships can be refined. Emerging automotive 
technologies such as autonomous (self-driving) vehicles and business model innovations 
such as shared mobility services also have the potential to alter how automobiles are 
used in the United States, creating both opportunities and challenges for policies to 
develop sustainable transportation systems. Adding these emerging technologies to the 
DtF model is a key opportunity for future work, as is the adaptation of DtF for other 
geographic markets. Both the DtF model and online user interface must evolve over time 
to respond to these developments and maximize learning opportunities for users. Given 
the pressing need to develop sustainable transportation, it is imperative that research not 
only explores how best to facilitate the development of improved mental models about 
AFV diffusion, but also translates that learning into testable real-world experiments and 
evidence-based policy and strategy improvements.

Figure 16.  To What Extent Do You Agree That The Simulator Provides a Better Learning 
Opportunity Compared with Traditional Reports and PowerPoint Presentations?
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Appendix 1: Model Sensitivity Analysis

To test the sensitivity of the model to parametric assumptions, we undertake multivariate 
Monte Carlo analysis for key sub-models. In the sensitivity analyses that follow, we define 
distributions for each of the parameters in the sub-model, and then simulate 1,000 runs of the 
model, drawing parameters for each model run using Latin hypercube sampling.

First, we explore the model’s sensitivity to utility function coefficients. We assume a normal 
distribution for all utility function coefficients listed in Table 3, with 20% standard deviation, 
limited to a span of ± 2 standard deviations from the reference values (Figure 17). These simula-
tions show that while significant variability exists in the specific market share of each vehicle 
platform over time, the overall pattern of behavior is unchanged.

Second, we explore the model’s sensitivity to uncertainty in consumer consideration param-
eters. We assume normal distributions for the parameters that define the strength of social 
exposure and marketing efficiency, with 20% standard deviation and a span of ± 2 standard 
deviations from the reference values (Figure 18). The greatest variability is observed in the tra-
jectory of the HEV platform. The rate of HEV adoption is strongly conditioned by the growth of 
consumers’ willingness to consider this new type of vehicle, whereas PHEV and BEV adoption 
is also conditioned by vehicle cost, range/performance, and charging infrastructure availability.

Third, we explore the model’s sensitivity to uncertainty in parameters governing deployment 
of refueling infrastructure. We assume a uniform distribution for the parameter defining the 
sensitivity of new station construction to station utilization, with a span of ± 40% of the baseline 
value. We also assume a normal distribution for target profitability with 20% standard deviation, 
restricted to ± 2 standard deviations from the reference values (Figure 19). Here we observe  
significant growth and variation in the adoption of PHEV and BEVs (largely at the expense of 
conventional hybrids). Higher BEV and PHEV adoption occurs when entrepreneurs are assumed 
to build new charging stations even when utilization of existing stations is low, because the more 
extensive network of charge points lower range anxiety and the costs associated with the search 
for charge points, ultimately increasing adoption and charge point utilization.

Finally, we explore the model’s sensitivity to the strength of technology change, assum-
ing uniform distribution of the strength of all learning curves with the span of ± 40% of the 

Figure 17.  Reference and sensitivity runs for utility function parameters.
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reference values (Figure 20). Here we observe the greatest variability in the diffusion of the 
more advanced PHEV and BEV platforms, which are more expensive initially and have greater 
opportunity for improvement as a result of learning.

Overall, the simulation results are robust to significant variation in the critical parametric 
assumptions.

Figure 18.  Reference and sensitivity runs for consumer consideration parameters.

Figure 19.  Reference and sensitivity runs for infrastructure adjustment parameters.

Figure 20.  Reference and sensitivity runs for OEM learning parameters
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Notes

1.	 We use the units ‘miles per gallon’ (mpg) that are standard in the United States, recognizing 
that this inverse measure of vehicle fuel efficiency has been observed to result in system-
atic misperceptions of vehicle fuel efficiency (Larrick & Soll, 2008). Fuel economy in mpg 
= 235.2 / fuel economy in L/100km.

2.	 The Trump administration recently announced that it will review the stringency of the 
CAFE targets, which is expected to result in a weakening of fuel economy standards for 
cars and light trucks (DeCicco, 2017), such as freezing the CAFE target at the 2021 level 
for years 2021-2025.

3.	 While the US vehicle fleet size, average vehicle life, and annual rate of new vehicle sales 
vary modestly year-on-year (USDOT, 2015), the US market is mature, with little change in 
total fleet size. The assumption of constant fleet size is also helpful for learning about the 
fundamental dynamics governing AFV diffusion. The model is easily adapted to an emerg-
ing economy such as India or China where growth in the total fleet is significant.

4.	 However, as conventional gasoline vehicles have constituted nearly 100% of the on-road 
vehicle fleet for nearly a century, we assume that all buyers maintain full consideration of 
gasoline vehicles.

5.	 As of this writing data are available through 2015. As new data become available, we will 
update the simulator so that the user begins at the current time with the most recent avail-
able data.

6.	 We invited the two auto firms to participate in a single workshop, but both declined, citing 
concerns over proprietary information.
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