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Abstract

The purpose of this article is to report on improvements on the interpretation and insights
emerging from dynamic decomposition weight analysis (DDWA). These improvements emerged
from efforts to further automate and expand the eigenvalue elasticity analysis methods and
resolve inconsistencies in assumptions made in published reports of DDWA usage. In addition
to making available to the broad system dynamics community an improved toolset to perform
eigenvalue elasticity analysis, in this paper we clarify the set of assumptions needed to obtain
reliable results and develop a new framework to assess the impact of model parameters on the
projections of behavior modes on stock behavior. We illustrate the use of these developments by
updating a previously published model analysis. The paper concludes by summarizing our find-
ings and their implications for the further development of structural dominance analysis.
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Introduction

The purpose of this article is to report on improvements on the interpretation
and insights emerging from dynamic decomposition weight analysis (DDWA)
originally developed by Saleh et al. (2010). These improvements emerged from
efforts to further automate and expand the eigenvalue elasticity analysis (EEA)
methods and resolve inconsistencies in assumptions made in published reports
of DDWA usage. It should be noted that these improvements and inconsistencies
could only be detected when attempting to expand the domain of EEA estab-
lished in papers developing the proof-of-concept for the method. We expect that
further improvements will emerge as we expand the use of the tools to different
types of models and with different goals. It is in this spirit that we make the tool-
set available to the system dynamics community (Naumov and Oliva, 2018).
Oliva defines the purpose and workings of EEA as follows:

Eigenvalue elasticity analysis (EEA) is a set of methods to assess the effect of
structure on behavior in dynamic models (Kampmann, 2012; Kampmann and
Oliva, 2006; Oliva, 2015). It works by considering model behavior as a
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combination of characteristic behavior modes and assessing the relative impor-
tance of particular elements of system structure in influencing these behavior
modes. … EEA uses linear systems theory to (i) decompose the observed behav-
ior into its constituent behavior modes, such as oscillation, growth and expo-
nential adjustment; and (ii) outline how a particular behavior mode and its
appearance in a given system variable depend upon particular parameters and
structural elements (links and loops) in the system. (Oliva, 2016, pp. 26–27).

The main advantage of EEA relative to other experimental methods used
for structural dominance analysis is that it provides an exhaustive and pre-
cise account of the relationship between model structure and model behav-
ior (Duggan and Oliva, 2013). Over the years, EEA methods have evolved as
new developments become available (for an overview of historical develop-
ments, see Kampmann and Oliva, 2008, p. 511; Oliva, 2015, pp. 209–210).
The current version of the EEA process is summarized in Figure 1. After the
original model is linearized, it is possible to calculate the eigenvalues and
eigenvectors of the system matrix. Structural explanations of the system
behavior are obtained by assessing the influence of the model’s feedback
loops on the behavior modes; this is referred to as loop eigenvalue elasticity
analysis (LEEA). The identification of high leverage policies is done by
assessing the effect of model parameters on the projections of the behavior
modes in the state variable of interest, and this is referred to as dynamic
decomposition weight analysis (DDWA).

To date, the most comprehensive usage of the EEA is documented in Oliva
(2016). In that paper, Oliva explored the usefulness of the toolset in a more
realistic model than the simple and stable models that up to that point had
been used to test and develop the toolset. Specifically, he expanded the
application domain of these methods by increasing the model size and incor-
porating stochastic variance in some model variables. As far as we can tell,
the process and results reported in pages 43–47 of the 2016 paper are an
accurate description of the analysis performed at the time and a correct
description and interpretation of the policy analysis performed by Oliva and
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Sterman (2001) and the results they obtained. However, further exploration
of the tools for EEA suggests that a different set of assumptions to perform
the structural decomposition weight analysis reveals better insights. Specifi-
cally, in the 2016 paper Oliva performed the evaluation of the weight elastic-
ity to parameters by including in the analysis the effect that parameters had
on the model initial conditions. That is, when assessing the effect of a
parameter on the dynamic decomposition weights, the evaluation (table 3 in
the paper) also included the effect that parameters had on initializing state
variables. This strategy was selected as it provided a better mapping of the
sensitivity analyses performed by Oliva and Sterman and had the additional
advantage of allowing the model to be used as is: fewer changes to the model
structure—a major concern when assessing the efficiency of the toolset.
This assumption, however, turns out to be problematic for policy analysis

using dynamic decomposition weights for three reasons:

1. It gives a false sense of parameter influence if the parameters are used to
initialize the model stocks—a common practice to initialize model sectors
in equilibrium.

2. Changes in initial conditions might result in unanticipated transient
behaviors (Moxnes and Davidsen, 2016).

3. Model initial conditions are seldom effective policy levers as they repre-
sent the current (or past) state of the system and policymakers need to
determine the course of action given the current state of the system.

Indeed, while initializing a model in equilibrium in terms of other var-
iables and parameters is convenient for model testing (see Sterman, 2000,
§18.1.5), one must realize that this is a modeling strategy for testing
expedience. For policy analysis purposes, initial conditions should be
treated as model constants that are different from those parameters that
have an influence throughout the duration of the simulation. Note that
the effect of this assumption on DDWA had not been empirically
explored before because, as described in Oliva (2016), up to that point
all EEA applications were on small models built explicitly for demonstra-
tion purposes.
In the latest implementation of EEA—which we call the structural domi-

nance analysis (SDA) toolset (Naumov and Oliva, 2018)—we have corrected
this assumption and now weight elasticities to model parameter are com-
puted after the model has been numerically initialized. This new assump-
tion also enables the computation of these elasticities to be performed at any
point during the simulation and not only at the initial simulation time—the
only option available with the original implementation of DDWA. The new
ability to perform DDWA at any point in the simulation, however, forced us
to develop a new interpretation of the impact of model parameters on model
behavior and policy development. Note that this change of assumptions only
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affects the computations of DDWA and the identification of high-leverage
policies (shaded area in Figure 1). The rest of the EEA, i.e. model lineariza-
tion, computation of eigenvalues and eigenvectors and LEEA, remains
unaltered.

In the following sections, we provide a new framework to assess the
impact of model parameters on the projections of reference modes on
stock behavior under the new set of assumptions, and we update and
reinterpret the analysis of the Oliva and Sterman (2001) model under
these new assumptions. We conclude by summarizing our findings and
their implications for the further development of structural dominance
analysis.

Identifying influential parameters

In the absence of changes in exogenous inputs, the resulting behavior of any
given state variable (t) of a linear system can be written as a weighted sum of
a set of behavior modes:

xi tð Þ¼wi,0 +wi,1eλ1t +…+wi,neλnt

where the λs are the eigenvalues of the Jacobian matrix of the linearized sys-
tem and the weights ws are constants that depend upon the eigenvectors and
the initial conditions of the system (see Saleh et al., 2010, for derivation).
Each of the system eigenvalues represents a behavior mode. For real eigen-
values, the behavior mode in the form eλt describes exponential growth
(λ > 0) or decay (λ < 0). Complex eigenvalues appear in conjugate pairs λ � iω,
which give rise to behavior modes in the form eλt sin(ωt + θ) that describe
oscillations with frequency ω within the envelope eλt that is either expanding
(λ > 0) or damped (λ < 0). In its original conception, DDWA pointed to policy
recommendations by isolating the system parameters that affect the projection
or weight (w) of a particular behavior mode on a stock of interest of the linear-
ized system (Saleh et al., 2010; Oliva, 2015). We have found, however, that it
is more useful to assess the influence of a parameter change on the envelope
of the behavior modes, i.e. the real part of the system eigenvalues.

Let us consider the projection of a behavior mode determined by the real
part of an eigenvalue:

r tð Þ¼weλt (1)

For real eigenvalues, Eq. (1) is the complete behavior mode; for complex
eigenvalues, this is half of the envelope of oscillations, i.e. the upper bound
on possible values. Note that EEA is performed on a system that has been
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linearized around a specific operating point at model time T, which in the new
version of EEA can be any time over the model simulation horizon. From a per-
spective of the DDWA, this model time T becomes the starting time for the anal-
ysis, or t = 0. In Eq. (1), the weight w defines the initial value of the projection
or the envelope of the behavior mode (at t = 0, the equation becomes simply
r(0) = w), while λ influences the rate of convergence of the exponential trajec-
tory over time. The latter can be evaluated as the convergence time t̂, where the
instantaneous time derivative _r tð Þ¼wλeλt reaches zero (see Figure 2). At
t = 0, this derivative becomes _r 0ð Þ¼wλ, so we can solve for t̂:

−w +wλt̂¼ 0) t̂¼1
λ

Note that the weight w shifts the envelope of the behavior mode up or
down (an instantaneous effect), while λ is responsible for the convergence or
divergence of the envelope of the behavior mode (an effect that is manifested
through time). For instance, in Figure 2, the behavior mode r3 with the smal-
lest t̂ (and the largest λ) shows the quickest convergence, despite the fact that
it has a higher initial offset (w) than the behavior mode r1. By extension, the
parameter that results in the largest change in λ for the behavior mode of
interest is the most effective long-term policy lever, but the short-term effect
of the parameter in w also needs to be considered.
Figure 3 shows the change in the envelope of the behavior mode depend-

ing on the sign of w and λ, and the relative magnitude of the weight and
eigenvalue elasticities to parameters (for complex eigenvalues, this repre-
sents only half of the envelope). The top left quadrant baseline (bold line)

Fig. 2. Behavior mode
convergence rate.
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shows the envelope of an exponential decay reference mode (λ < 0) with a
positive projection (w > 0) on the stock. The solid dark-gray line (labeled ++)
shows the effect of augmenting a parameter whose weight and eigenvalue
elasticities are positive (Ew > 0; Eλ > 0). Such change would result in a
higher starting point for the projection of the reference mode (the positive
elasticity of a positive weight w means a larger value at t = 0 in Eq. (1)), but
a faster convergence rate (the positive elasticity of a negative eigenvalue λ
means more negative value of the exponent in Eq. (1). The light-gray dashed
line (labeled −−) shows a lower starting point for the projection of the refer-
ence mode and a slower convergence rate that would emerge from

Fig. 3. Weight and behavior mode elasticity to parameters.
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augmenting a parameter whose weight and eigenvalue elasticities are nega-
tive (Ew < 0; Eλ < 0). The other two lines (+− and −+) show the other two
possible combinations of the elasticity signs. The identification of the most
desirable parameters for policy design is determined by the desirability of
the change (does one want to increase or decrease the projection of the
eigenvalue) and the effect of the parameter on the behavior mode. The rest
of the quadrants in Figure 3 show the different sign combinations of w, λ,
Ew, and Eλ.
We believe that this framework provides an intuitive way to capture the

dual effect of a parameter on the behavior mode and its projection on a
stock. Accordingly, the updated SDA toolset provides a table with all the
required information to identify the model parameters that represent the
highest leverage point to augment or diminish a particular behavior. The
next section shows the interpretation of this improved output for the same
analysis performed in the DDWA section of Oliva (2016).

Analysis of Oliva and Sterman (2001)

Oliva (2016) focused its analysis on the policy goals articulated in section 5 of
Oliva and Sterman (2001), i.e. how to reduce the erosion of service quality (see
Appendix for an overview of the model structure). Table 1 reports the weight
and eigenvalue elasticities of eigenvalue 13 (the long-term decay) on desired
time per order (the model’s proxy for service quality) at time 53 (the simulation
time when the DDWA was performed) for the model analyzed by Oliva (2016).
Note that at time 53 the real part of eigenvalue 13 is negative (λ13 = − 0.00083)
and the weight on stock desired time per order is positive (w13 = 1.79); thus the
projected behavior mode falls into the upper left quadrant of Figure 3 (see also
figure 9 in Oliva, 2016). The table only reports the top 13 parameters, as the rest
have elasticities three orders of magnitude smaller than the smallest reported
value. This table is the equivalent of table 3 in Oliva (2016), with two important
differences. First, the reported elasticities in this table are computed under the
new assumption; i.e. the model is initialized numerically using the original
values of all parameters, so any change in parameter values during the analysis
does not affect the initialization. It should be noted, however, that in this model
only two (out of 13) stocks (service backlog and desired labor) were initialized
in equilibrium using other variables and parameters. The second change is that
in this table, as per the insights developed in the previous section, the parame-
ters are ranked according to the elasticity of the real part of the eigenvalue,
rather than the elasticity of the weight.1 As a reference, the elasticities of the

1The toolset allows for different sorting of the parameters, e.g. alphabetical and by elasticity of weight and
real and imaginary parts of eigenvalues.
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weight originally reported by Oliva (2016) are listed in the last column of
Table 1.

When comparing the contents of the table above to table 3 in Oliva (2016)
several differences are noteworthy. First, all the initialization parameters
that were present in the original table have been dropped from the updated
table. This is consistent with the purpose of the analysis—indeed, these
parameters were ignored in the discussion in the 2016 paper. Second, the
weight elasticities to constants used in stock initializations are significantly
modified. The weight elasticity to hours per week per employee has been cut
by almost 60 percent and desired delivery delay has now moved to be one of
top-ranking policy levers. By removing the effect of initial conditions from
the elasticity computations, we now see in the updated table the long-term
effect of parameter changes on the desired policy intervention. This, we
believe, is a clearer interpretation of the effect of parameter changes in the
policy design. Indeed, increasing the desired delivery delay is another policy
that was not explored by Oliva and Sterman and would be highly influential
as it would remove much of the work pressure observed in the system—the
driver of the “cutting corners” behavior.

The third significant change is in the elasticity of time to adjust labor. This is
due to the fact that its effect on the equilibrium initialization of the desired
labor stock is no longer captured in the analysis. The main effect of the change
of assumptions is the change of sign of the elasticity (from negative in the origi-
nal table to positive here). While the analysis presented in Oliva (2016) still

Table 1. Parameter
elasticity of weight (w)
and behavior mode (λ) of
eigenvalue 13 on desired
time per order

Rank Parameter Elasticity of w of
λ13 on desired time

per order

Elasticity
of Re(λ13)

Elasticity of w of λ13 on
desired time per order
(from Oliva, 2016)

1 Hours per week per employee −9.622 −3.733 −23.261
2 Desired delivery delay −9.622 −3.733 0.000*
3 Rookie effectiveness 0.951 −1.458 −0.004*
4 Time to adjust DTO down −0.161 −0.553 0.000*
5 Alpha 0.142 0.516 0.356
6 Time to adjust desired labor 0.099 −0.288 0.099
7 Fraction of personnel for

training
−0.136 0.208 0.001*

8 Time to adjust labor 0.055 −0.180 −1.259
9 Beta −0.002 −0.037 −0.001*
10 Time for turnover 0.002 0.019 −0.008*
11 Time to perceive labor

productivity
0.002 0.014 −0.533

12 Time for experience 0.001 −0.010 0.062
13 Hiring delay −0.000 −0.001 0.667

…

*Not reported in Oliva (2016).
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explains why the faster capacity acquisition policy (policy 1) was ineffectual in
the original tests performed by Oliva and Sterman (2001)—when changing
parameter values they were also changing the model initial conditions—the
updated results indicate that their intuition was correct and that time to adjust
labor and the hiring delay should move in the same direction as assessed by
the elasticity of the eigenvalue to changes in these parameters.
Finally, the removal of the effects of the initial conditions increased the

rank of alpha and time to adjust DTO down on the projection of the eigen-
value on the desired time per order stock—something that was expected
given the immediacy of those parameters to the erosion dynamics. Accord-
ing to the elasticity table, if the propensity for employees to cut corners
under work pressure were to be increased, i.e. make alpha more negative,
this would, as expected, increase the weight of the long-term decay behavior
mode on desired time per order and it would also accelerate the decay rate
(note the positive elasticity of the eigenvalue to alpha in the middle column).
The effects of the time constant to adjust desired time per order have similar
magnitudes but opposite signs. Increasing the time to adjust DTO down
would reduce the projection of the behavior mode on desired time per order
and would reduce the long-term decay rate.
Although in a different order than the original table in the 2016 paper, the

updated table contains all the parameters in the first three policies explored
by Oliva and Sterman (2001). While they performed their testing using the
equilibrium initialization service backlog and desired labor, Table 1 pro-
vides explanations of why policies 1 and 3 would not have been successful
even if eliminating the effect of parameter changes on the initial values of
stocks. For policy 1, the effect of time to adjust labor is very small compared
to the other parameters (ranked 8), and they focused on adjusting the hiring
delay, which has almost no impact on the relevant weight, and ignored time
to adjust desired labor, which has an effect two orders of magnitude larger.
As for policy 3, increasing rookie effectiveness does have the desired effect
of reducing the rate of erosion of service quality (note the negative sign of
the eigenvalue elasticity), but most of this effect is negated by the positive
elasticity of the weight to the same parameter.
Note that none of these changes affects the other results presented in Oliva

(2016), nor its original message that the tools behind SDA are an efficacious,
efficient and effective way to understand and develop policies for realistic
system dynamics models.

Conclusion

While it was not yet possible to identify or develop an aggregated metric for
the full effect of a parameter in a stock’s weight and eigenvalue, we believe
that the insights gained by the framework presented in Figure 3 will improve
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the interpretability of the results generated by the SDA toolset. Furthermore,
the framework makes clear that assessing a parameter impact on a stock’s
behavior is a time-sensitive issue as the elasticity of eigenvalues captures the
response of the dynamics of the system while the elasticity of weights
reflects the instantaneous change in magnitude of the projection.

We have updated the SDA toolset (Naumov and Oliva, 2018) to consistently
apply the analysis under the new set of assumptions (even if stocks are initial-
ized from parameters) and present the results of the analysis in a way that
facilitates their interpretation under the new framework. The toolset also auto-
mates many of the processes that used to require multiple pieces of software
and it expedites the exporting of graphs and tables for offline analysis or pub-
lication. Finally, for consistency, the SDA toolset’s website now includes the
updated reports of the analysis of previously published models that were not
performed under the assumptions listed here.

Although there is still much work to be done to reduce the cost of per-
forming and interpreting EEA (Kampmann and Oliva, 2017), the updated
platform also facilitates the deployment of new ways to present and process
the results (see Naumov and Oliva, 2018, for list of planned improvements).
We hope that these improvements encourage more modelers to use the tool-
set and expand the usage and interpretation of EEA. It is only through the
accumulated experience of assessing numerous models through this lens
that we can further develop SDA’s potential.
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Appendix: Model structure

Source: Oliva (2016)
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